Altered hemodynamics is a key factor for atherosclerosis. For decades, endothelial cell (EC) responses to fluid-generated wall shear stress have been the central focus for atherogenesis. However, circulating blood is not a cell-free fluid, it contains mechanosensitive red blood cells (RBCs) that are also subjected to altered hemodynamics and release a large amount of ATP, but their impact on atherosclerosis has been overlooked. The focus of this study is the role of shear stress (SS)-induced RBC-released ATP in atherosclerosis. Hypercholesterolemic mouse models with and without RBC-Pannexin 1 deletion were used for the study. Results showed that SS-induced release of ATP from RBCs was at µM concentrations, three-orders of magnitude higher than that from other cell types. Suppression of RBC-released ATP via deletion of Pannexin 1, a mechanosensitive ATP-permeable channel, reduced high-fat diet-induced aortic plaque burden by 40%-60%. Importantly, the location and the extent of aortic atherosclerotic lesions spatially matched with the ATP deposition profile at aortic wall predicted by a computational fluid dynamic (CFD) model. Furthermore, hypercholesterolemia increases EC susceptibility to ATP with potentiated increase in [Ca