Mimicking metabolic pathways on electrodes enables in vivo metabolite monitoring for decoding metabolism. Conventional in vivo sensors cannot accommodate underlying complex reactions involving multiple enzymes and cofactors, addressing only a fraction of enzymatic reactions for few metabolites. We devised a single-wall-carbon-nanotube-electrode architecture supporting tandem metabolic pathway-like reactions linkable to oxidoreductase-based electrochemical analysis, making a vast majority of metabolites detectable in vivo. This architecture robustly integrates cofactors, self-mediates reactions at maximum enzyme capacity, and facilitates metabolite intermediation/detection and interference inactivation through multifunctional enzymatic use. Accordingly, we developed sensors targeting 12 metabolites, with 100-fold-enhanced signal-to-noise ratio and days-long stability. Leveraging these sensors, we monitored trace endogenous metabolites in sweat/saliva for noninvasive health monitoring, and a bacterial metabolite in the brain, marking a key milestone for unraveling gut microbiota-brain axis dynamics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH