Experimental Online Quantum Dots Charge Autotuning Using Neural Networks.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yann Beilliard, Dominique Drouin, Eva Dupont Ferrier, Bastien Galaup, Clément Godfrin, Kristiaan De Greve, Stefan Kubicek, Dominic Leclerc, Ruoyu Li, Roger G Melko, Alexis Morel, Joffrey Rivard, Claude Rohrbacher, Victor Yon

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Nano letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 691928

Spin-based semiconductor qubits hold promise for scalable quantum computing, yet they require reliable autonomous calibration procedures. This study presents an experimental demonstration of online single-dot charge autotuning using a convolutional neural network integrated into a closed-loop calibration system. The autotuning algorithm explores the gates' voltage space to localize charge transition lines, thereby isolating the one-electron regime without human intervention. This exploration leverages the model's uncertainty estimation to find the appropriate gate configuration with minimal measurements while reducing the risk of failures. In 20 experimental runs, our method achieved a success rate of 95% in locating the target electron regime, highlighting the robustness of this approach against noise and distribution shifts from the offline training set. Each tuning run lasted an average of 2 h and 9 min, primarily due to the limited speed of the current measurement. This work validates the feasibility of machine-learning-driven real-time charge autotuning for quantum dot devices, advancing the development toward the control of large qubit arrays.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH