Towards machine learning fairness in classifying multicategory causes of deaths in colorectal or lung cancer patients.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Fei Deng, Mary L Disis, Catherine H Feng, Nan Gao, Lanjing Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 785.13 *Trios

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 692466

Classification of patient multicategory survival outcomes is important for personalized cancer treatments. Machine Learning (ML) algorithms have increasingly been used to inform healthcare decisions, but these models are vulnerable to biases in data collection and algorithm creation. ML models have previously been shown to exhibit racial bias, but their fairness towards patients from different age and sex groups have yet to be studied. Therefore, we compared the multimetric performances of 5 ML models (random forests, multinomial logistic regression, linear support vector classifier, linear discriminant analysis, and multilayer perceptron) when classifying colorectal cancer patients (
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH