Generation of antigen-specific paired chain antibody sequences using large language models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alexandra A Abu-Shmais, Sarah F Andrews, Helen Y Chu, Ivelin S Georgiev, Rebecca A Gillespie, Grant Hansman, Sofia Held, Clinton M Holt, Alexis K Janke, Nicole V Johnson, Gwen Jordaan, Masaru Kanekiyo, Jeongryeol Kim, Jennifer Logue, Toma M Marinov, Jason S McLellan, Fani Pantouli, Ted M Ross, Giuseppe A Sautto, Daniel J Sheward, Léna Vandenabeele, Matthew J Vukovich, Perry T Wasdin

Ngôn ngữ: eng

Ký hiệu phân loại: 929.10284 Genealogy

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 692469

The traditional process of antibody discovery is limited by inefficiency, high costs, and low success rates. Recent approaches employing artificial intelligence (AI) have been developed to optimize existing antibodies and generate antibody sequences in a target-agnostic manner. In this work, we present MAGE (Monoclonal Antibody GEnerator), a sequence-based Protein Language Model (PLM) fine-tuned for the task of generating paired human variable heavy and light chain antibody sequences against targets of interest. We show that MAGE can generate novel and diverse antibody sequences with experimentally validated binding specificity against SARS-CoV-2, an emerging avian influenza H5N1, and respiratory syncytial virus A (RSV-A). MAGE represents a first-in-class model capable of designing human antibodies against multiple targets with no starting template.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH