Crystal Structure Prediction Meets Artificial Intelligence.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jian Cao, Zian Chen, Guoyong Fang, Tao He, Xiao He, Haichao Li, Zijun Meng, Hongping Xiao, Lina Xu, Yueyu Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 570.752 Preserving biological specimens

Thông tin xuất bản: United States : The journal of physical chemistry letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 692536

Crystal structure prediction (CSP) represents a fundamental research frontier in computational materials science and chemistry, aiming to predict thermodynamically stable periodic structures from given chemical compositions. Traditional methods often face challenges such as high computational costs and local minima trapping. Recently, artificial intelligence methods, represented by generative adversarial networks (GANs), variational autoencoders (VAEs), diffusion models, and large language models (LLMs), have revolutionized the traditional prediction paradigm. These computational frameworks efficiently extract chemical rules and structural features from crystal databases, significantly reducing computational costs while maintaining prediction accuracy. This Perspective systematically evaluates the advantages and limitations of various generative models, explores their synergies with conventional approaches, and discusses their future prospects in accelerating materials discovery and development, providing new insights for future research directions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH