Adaptation is a critical determinant of the diversification, persistence, and geographic range limits of species. Yet the genetic basis of adaptation is often unknown and potentially underpinned by a wide range of mutational types-from single nucleotide changes to large-scale alterations of chromosome structure. Copy number variation (CNV) is thought to be an important source of adaptive genetic variation, as indicated by decades of candidate gene studies that point to CNVs underlying rapid adaptation to strong selective pressures. Nevertheless, population-genomic studies of CNVs face unique logistical challenges not encountered by other forms of genetic variation. Consequently, few studies have systematically investigated the contributions of CNVs to adaptation at a genome-wide scale. We present a genome-wide analysis of CNV contributing to the adaptation of an invasive weed,