Synergistic Anion-Cation Chemistry Enables Highly Stable Zn Metal Anodes.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qianwen Dong, Mingzhe Fang, Chenyue Huang, Jun Lu, Yanqun Lv, Xianji Qiao, Chuang Sun, Wanqi Tang, Yunkai Xu, Jingting Yang, Ming Zhao, Hongfei Zheng, Lijun Zheng, Mengting Zheng, Xinxin Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Journal of the American Chemical Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 692600

Engineering aqueous electrolytes with an ionic liquid (IL) for the zinc (Zn) metal anode has been reported to enhance the electrochemical performances of the Zn metal batteries (ZMBs). Despite these advancements, the effects of IL and the mechanisms involving their anions and cations have been scarcely investigated. Here, we introduce a novel electrolyte design strategy that synergizes anion-cation chemistry using a halogen-based IL and elucidates the underlying mechanism. The strongly and preferentially adsorbed halogen anions guide the formation of a water-poor electrical double layer (EDL) by imidazole-based cations, resulting in the formation of a halide-rich inorganic interphase. This synergistic interaction significantly mitigates Zn anode corrosion at the anode-electrolyte interface, while the halide-rich interphase promotes dense Zn deposition. Consequently, the battery exhibits superior performance, including high reversibility (99.74%) and an ultralong cycle life (20,000 cycles). This synergistic anion-cation chemistry strategy combines the traditional single solid electrolyte interphase and the classic EDL mechanism, substantially enhancing the electrochemical performance of ZMBs.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH