Learning in Wilson-Cowan Model for Metapopulation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lorenzo Buffoni, Lorenzo Chicchi, Duccio Fanelli, Diego Febbe, Lorenzo Giambagli, Raffaele Marino, Francesca Di Patti

Ngôn ngữ: eng

Ký hiệu phân loại: 551.5246 Meteorology

Thông tin xuất bản: United States : Neural computation , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 692762

The Wilson-Cowan model for metapopulation, a neural mass network model, treats different subcortical regions of the brain as connected nodes, with connections representing various types of structural, functional, or effective neuronal connectivity between these regions. Each region comprises interacting populations of excitatory and inhibitory cells, consistent with the standard Wilson-Cowan model. In this article, we show how to incorporate stable attractors into such a metapopulation model's dynamics. By doing so, we transform the neural mass network model into a biologically inspired learning algorithm capable of solving different classification tasks. We test it on MNIST and Fashion MNIST in combination with convolutional neural networks, as well as on CIFAR-10 and TF-FLOWERS, and in combination with a transformer architecture (BERT) on IMDB, consistently achieving high classification accuracy.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH