The capability to regulate heat transport dynamically and reversibly within solid materials propels advancement in aerospace conditioning, battery thermal control, and energy harvesting/conversion industries. Although aerogels are known for thermal insulation properties, their constant thermal resistance induced by immutable pore structure makes them struggle to reverse-release the accumulated thermal energy. Here, we develop a nanocrystalline whisker/nanofiber aerogel (WFA) thermal gating induced by the self-catalyzed growth strategy, whose elasticity offers possibilities for dynamic thermal management. Thermal conductivities can be continuously regulated by external compressive strain-trigged heat conduction pathway and interfacial resistance variations, switching seamlessly between 0.020 W m