FIORA: Local neighborhood-based prediction of compound mass spectra from single fragmentation events.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Philipp Benner, Alexander Kister, Jan Lisec, Thilo Muth, Yannek Nowatzky, Knut Reinert, Francesco Friedrich Russo

Ngôn ngữ: eng

Ký hiệu phân loại: 948.5038 *Sweden

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 693060

Non-targeted metabolomics holds great promise for advancing precision medicine and biomarker discovery. However, identifying compounds from tandem mass spectra remains a challenging task due to the incomplete nature of spectral reference libraries. Augmenting these libraries with simulated mass spectra can provide the necessary references to resolve unmatched spectra, but generating high-quality data is difficult. In this study, we present FIORA, an open-source graph neural network designed to simulate tandem mass spectra. Our main contribution lies in utilizing the molecular neighborhood of bonds to learn breaking patterns and derive fragment ion probabilities. FIORA not only surpasses state-of-the-art fragmentation algorithms, ICEBERG and CFM-ID, in prediction quality, but also facilitates the prediction of additional features, such as retention time and collision cross section. Utilizing GPU acceleration, FIORA enables rapid validation of putative compound annotations and large-scale expansion of spectral reference libraries with high-quality predictions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH