Decision-making in mammals fundamentally relies on integrating multiple sensory inputs, with conflicting information resolved flexibly based on a dominant sensory modality. However, the neural mechanisms underlying state-dependent changes in sensory dominance remain poorly understood. Our study demonstrates that locomotion in mice shifts auditory-dominant decisions toward visual dominance during audiovisual conflicts. Using circuit-specific calcium imaging and optogenetic manipulations, we found that weakened visual representation in the posterior parietal cortex (PPC) leads to auditory-dominant decisions in stationary mice. Prolonged locomotion, however, promotes visual dominance by inhibiting auditory cortical neurons projecting to the PPC (AC