Spatial interpolation of cropland soil bulk density by increasing soil samples with filled missing values.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dan Chen, Xinyi Chen, Jinli Cheng, Aiwen Li, Qiquan Li, Wendan Li, Yaruo Mao, Wenjiao Shi, Tianxiang Yue, Bin Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 651.2 Equipment and supplies

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 693220

Large sample sizes are crucial for accurately capturing spatial changes in soil properties by spatial interpolation methods. However, soil bulk density (BD) data in historical datasets is often incomplete, and it's uncertain if filled values enhance spatial interpolation accuracy. Using 2,883 cropland soil BD samples from the Sichuan Basin in China, we developed the best prediction models from traditional pedotransfer function (PTF), multiple linear regression (MLR), random forest (RF), and radial basis function neural network (RBFNN) to fill missing BD values for 1,336 samples. We then applied ordinary kriging (OK) and inverse distance weighting (IDW) to map soil BD, incorporating the filled BD as modeling points. The RBFNN model, tailored for each sub-watershed, yielded the highest accuracy in filling missing BD, with an increase in coefficient of determination (R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH