Resistive Random Access Memory (ReRAM) is an emerging class of non-volatile memory that stores data by altering the resistance of a material within a memory cell. Unlike traditional memory technologies, ReRAM operates by using voltage to induce a resistance change in a metal oxide layer, which can then be read as a binary state (0 or 1). In this work, we present a flexible, forming-free, ReRAM device using an aluminium-doped zinc oxide (AZO) electrode and a nickel oxide (NiO) active layer. The fabricated Ti/NiO/AZO/PET device demonstrates reliable bipolar resistive switching (BRS) with two distinct and stable resistance states, crucial for neuromorphic computing. Electrical tests showed stable high and low resistance states with set voltage (V