Endothelial cells play a critical role in the pathophysiology of ischemia-reperfusion injury (IRI). Although previous studies have shown that IRI can activate PANoptosis, the underlying mechanisms remain unclear. Our research investigates how IRI induces PANoptosis in endothelial cells, aiming to identify protective strategies to safeguard these cells from PANoptosis triggered by IRI. We established an in vitro endothelial cell hypoxia/reoxygenation (H/R) treatment model and an in vivo SD rat free flap IRI model. A series of assays, including PI/Hoechst staining, Western blotting, and immunohistochemistry, were conducted to assess PANoptosis-like cell death in endothelial cells. Cell transfection with ZBP1 siRNA and immunoprecipitation were used to explore the involved signaling pathways. Our results showed activation of PANoptosis-like cell death and upregulation of ZBP1 expression following IRI. After knocking down ZBP1 expression, a significant alteration in PANoptosis-like cell death and the assembly of the ZBP1-PANoptosome in endothelial cells was observed, confirming the occurrence of PANoptosis. In conclusion, our research confirms that IRI induces PANoptosome formation, promoting ZBP1-dependent PANoptosis in endothelial cells.