Studying neurological disorders in vitro remains challenging due to the complexity of the human brain and the limited availability of primary neural cells. Tissue engineering enables the development of three-dimensional (3D) cell culture systems by generating a self-produced extracellular matrix (ECM) substrate. Culturing cells within this ECM substrate is known to more effectively mimic physiological conditions compared to traditional monolayer cultures. In this study, we analyzed the proteome and matrisome of 3D cultured dermal fibroblasts embedded in a self-produced ECM. Interestingly, in silico analysis predicted strong activation of neurogenesis-associated functions in this tissue-engineered 3D model. We showed that ECM proteins typically linked to neuronal development and maintenance were also expressed by dermal fibroblasts. Coculturing dermal fibroblasts with induced pluripotent stem cell (iPSC)-derived motor neurons notably enabled long-lasting culture periods while minimizing neuronal death, all without the need for costly media supplements. Furthermore, fibroblast-conditioned media enhanced neuronal survival. Although we demonstrated that the dermal fibroblast-derived ECM provided a rich matrix of proteins and signaling molecules that support neuronal growth and survival, the ECM alone seems insufficient to sustain the neuronal networks. These findings suggest that 3D cultured patient-derived dermal fibroblasts generate a neuro-supportive microenvironment and could serve as a cost-effective and less invasive alternative to brain biopsies for modeling complex neurological disorders. This approach offers a promising platform for studying such neural growth and survival and exploring therapeutic strategies for neurological diseases.