LoreX: A Low-Energy Region Explorer Boosts Efficient Crystal Structure Prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chuan-Nan Li, Han-Pu Liang, Zijing Lin, Haochen Wang, Su-Huai Wei, Siyuan Xu, Jingxiu Yang, Xie Zhang, Bai-Qing Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of the American Chemical Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 693955

Machine learning has boosted the remarkable development of crystal structure prediction (CSP), greatly accelerating modern materials design. However, slow location of the low-energy regions on the potential energy surface (PES) is still a key bottleneck for the overall search efficiency. Here, we develop a low-energy region explorer (LoreX) to rapidly locate low-energy regions on the PES. This achievement stems from graph-deep-learning-based PES slicing, which classifies structures into different prototypes to divide and conquer the PES. The accuracy and efficiency of LoreX are validated on 27 typical compounds, showing that it correctly locates low-energy regions with only 100 selected samples. The powerful capability of LoreX is demonstrated in solving two challenging problems: discovering new boron allotropes and identifying the puzzling crystal structures of the ordered vacancy compound CuIn
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH