Experimental constraints and sample limitations can preclude ideal measurements of electrical transport properties of materials. In such situations, AC electrical transport methods are often employed due to a significant increase in signal-to-noise ratio they can provide. However, dynamic effects that are not often accounted for may be present that may modify the signals in these measurements. In particular, dynamic filtering effects are prominent in small, granular, and heterogeneous materials. We demonstrate that a lock-in amplifier based circuit can distinguish between these DC transport and AC filtering effects. We further demonstrate that this filtering can reveal distinct signatures of magnetic transitions while providing a measure of sample quality.