Background Recent studies have investigated how deep learning (DL) algorithms applied to CT using two-dimensional (2D) segmentation (sagittal or axial planes) can calculate bone mineral density (BMD) and predict osteoporosis-related outcomes. Purpose To determine whether TotalSegmentator, an nnU-net algorithm, can measure three-dimensional (3D) vertebral body BMD across consistently imaged thoracic levels (T1-T10) at any conventional, noncontrast chest CT examination. Materials and Methods This study is a secondary analysis of a multicenter (