Brain injury metrics and their risk functions in frontal automotive collisions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mitsutoshi Masuda, Matthew B Panzer, Fusako Sato, Taotao Wu, Masayuki Yaguchi

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : Traffic injury prevention , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 694391

OBJECTIVES: The objective of this study was to develop abbreviated injury scale (AIS) 1, AIS2, AIS3 and AIS4+ injury risk functions (IRFs) for traumatic brain injuries (TBIs) as estimated by the rotational kinematics of the head, in accordance with AIS1998. The effectiveness of the IRFs was investigated by comparisons with real-world accident data of frontal crash configurations. In addition, links of the IRFs developed in accordance with AIS1998 to other AIS versions were discussed. METHODS: AIS1, AIS2, AIS3 and AIS4+ IRFs based on finite element analysis (FEA)-based metrics in this study were developed using a TBI database used for developing mild TBI (concussion) and severe TBI (diffuse axonal injury (DAI) and intracerebral hemorrhage (ICH)) IRFs in our previous study. The TBI database includes head kinematics, clinical outcomes, and FEA-based metrics such as maximum principal strain (MPS) obtained from reconstructions using harmonized species-specific finite element (FE) brain models. In this study, TBI severities in the TBI database were reclassified in accordance with AIS1998 to evaluate IRFs in comparison with field accident data for application to automotive safety. IRFs based on kinematics-based metrics were developed by transforming FEA-based IRFs RESULTS: The MPS95 IRFs exhibited better quality (lower quality index (QI) values) and better goodness of fit with the TBI database (lower AIC value) among the FEA-based IRFs. Kinematics-based metrics exhibited the greatest coefficients of determination ( CONCLUSIONS: The TBI risks predicted by the MPS95 IRFs and kinematics-based IRFs derived from the MPS95 IRFs were relatively more aligned with the real-world TBI rates for drivers in the full engagement crash configuration. However, further investigations are needed to minimize the gap between predicted TBI risks and real-world TIB rates. In addition, AIS coding of TBIs has changed through version upgrades, especially for concussion. This change in AIS coding has affected IRFs for AIS1 and AIS2. Further revisions of TBI IRFs will be required in the future if the AIS definitions change.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH