Lineage reprogramming of glial cells into induced neurons (iNs) has emerged as an innovative strategy to replace neurons lost due to injury or neurological diseases. Here, we describe a step-by-step protocol to induce in vivo conversion of reactive glial cells, proliferating within the injured hippocampus, into mature and functional GABAergic iNs through retrovirus-mediated expression of two neurogenic fate determinants (Ascl1 and Dlx2). We have previously applied this method to study the integration and functional impact of GABAergic iNs in epileptic mice (Lentini et al., Cell Stem Cell 28:2104-2121.e10, 2021). We successfully generated GABAergic iNs that exhibited substantial integration within pathological circuits, leading to a significant reduction in epileptic seizures.