This study aimed to evaluate the effects of CD146, a surface antigen of mesenchymal stem cells from human exfoliated deciduous teeth (SHEDs), on angiogenic potential. SHEDs were isolated from patients' deciduous teeth and sorted into CD146-positive (CD146 + SHED) and CD146-negative (CD146 - SHED) populations. Three groups-non-sorted SHED, CD146 + SHED, and CD146 - SHED-were compared. Angiogenic potential was assessed by co-culturing each group with human umbilical vein endothelial cells (HUVECs) and evaluating lumen formation using an endothelial tube formation assay. The gene and protein expression levels of angiogenic markers, including vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), cluster of differentiation 31 (CD31), and basic fibroblast growth factor (bFGF), were analyzed using a real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The tube formation assay revealed significantly enhanced angiogenic potential in CD146 + SHED and non-sorted SHED compared to CD146 - SHED. The gene and protein expression levels of VEGF, VEGFR2, CD31, and bFGF were significantly upregulated in CD146 + SHED and non-sorted SHED, highlighting superior angiogenic capabilities in CD146 + SHED. CD146 + SHED demonstrated enhanced angiogenic potential compared to CD146 - SHED, supporting their use in regenerative therapies targeting angiogenesis.