CATD: Unified Representation Learning for EEG-to-fMRI Cross-Modal Generation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Baiying Lei, Zhihan Lyu, Mufti Mahmud, Shuqiang Wang, Weiheng Yao, Ning Zhong

Ngôn ngữ: eng

Ký hiệu phân loại: 591.514 +Learning

Thông tin xuất bản: United States : IEEE transactions on medical imaging , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 694694

Multi-modal neuroimaging analysis is crucial for a comprehensive understanding of brain function and pathology, as it allows for the integration of different imaging techniques, thus overcoming the limitations of individual modalities. However, the high costs and limited availability of certain modalities pose significant challenges. To address these issues, this paper proposed the Condition-Aligned Temporal Diffusion (CATD) framework for end-to-end cross-modal synthesis of neuroimaging, enabling the generation of functional magnetic resonance imaging (fMRI)-detected Blood Oxygen Level Dependent (BOLD) signals from more accessible Electroencephalography (EEG) signals. By constructing Conditionally Aligned Block (CAB), heterogeneous neuroimages are aligned into a potential space, achieving a unified representation that provides the foundation for cross-modal transformation in neuroimaging. The combination with the constructed Dynamic Time-Frequency Segmentation (DTFS) module also enables the use of EEG signals to improve the temporal resolution of BOLD signals, thus augmenting the capture of the dynamic details of the brain. Experimental validation demonstrated that the framework improves the accuracy of brain activity state prediction by 9.13% (reaching 69.8%), enhances the diagnostic accuracy of brain disorders by 4.10% (reaching 99.55%), effectively identifies abnormal brain regions, enhancing the temporal resolution of BOLD signals. The proposed framework establishes a new paradigm for cross-modal synthesis of neuroimaging by unifying heterogeneous neuroimaging data into a potential representation space, showing promise in medical applications such as improving Parkinson's disease prediction and identifying abnormal brain regions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH