Unraveling the power of NAP-CNB's machine learning-enhanced tumor neoantigen prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andres M Acosta-Moreno, Ramon Alemany, Pilar Ballesteros-Cuartero, Jose R Macias, Almudena Mendez-Perez, Arrate Munoz-Barrutia, Carlos Oscar Sorzano, Ruben Sánchez-García, Rebeca Sanz-Pamplona, Esteban Veiga, Carlos Wert-Carvajal

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: England : eLife , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 694834

In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH