OBJECTIVE: Powered 2-wheeler (PTW) safety remains a critical concern, prompting the investigation into the efficacy of advanced rider assistance systems (ARAS) in reducing crash rates. The objective of this study is to provide a comprehensive quantification of the effects of 2 such systems, Adaptive Cruise Control (ACC) and Autonomous Emergency Braking (AEB), on the avoidance or mitigation of motorcycle crashes. METHODS: Using real-world motorcycle crash data, this research employed kinematic reconstruction techniques and numerical simulations to evaluate the impact of ACC and AEB on crash reduction. A parametric study was conducted, exploring various parameters including trigger distances, deceleration rates, and field of view, to assess their influence on the effectiveness of this systems in crashes involving PTWs. RESULTS: The analysis revealed significant findings regarding the effectiveness of ACC and AEB in reducing crash rates involving motorcycles. Notably, ACC, especially in dynamic mode with a trigger distance of 40 m, demonstrated the ability to prevent 53% of crashes, resulting in impact speed reductions ranging from 4 to 25 km/h. Similarly, AEB exhibited remarkable effectiveness, reducing impact speeds by 2.5 to 38.9 km/h, with avoidance rates ranging from 7% to 63%. CONCLUSIONS: Optimization of key parameters such as triggering strategy, deceleration, sensor range, and field of view is crucial for maximizing the effectiveness of ARAS in motorcycle safety applications. These findings provide valuable insights for manufacturers and policymakers, highlighting the need for tailored approaches to system design and implementation. By refining these systems based on empirical data and analysis, significant improvements can be made in motorcycle safety, ultimately saving lives and reducing the severity of crashes on roadways.