The realization of fast, simple and efficient flight attitude recognition is crucial for flight safety and control stability, but still faces challenges in new materials and technologies. Herein, a chloroplast-like selenium-doped copper sulfide@black phosphorus (CSS@BP) composite material is prepared by ultrasonic chemical synthesis using BP nanosheets to effectively absorb light energy and disperse CSS layers to promote rapid photothermal conversion, which shows the temperature change more than ≈40 °C and an excellent photothermal conversion efficiency of 68.9% at 405 nm, corresponding to the theoretical calculation results. Moreover, the CSS@BP/Bi