Revealing the removal behavior of five neglected microplastics in coagulation-ultrafiltration processes: Insights from experiments and predictive modeling.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Guijing Chen, Xifan Li, Baicang Liu, Jun Ma, Peng Tang, Guanyu Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 809.008 History and description with respect to kinds of persons

Thông tin xuất bản: Netherlands : Journal of hazardous materials , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 695272

Typical water treatment processes are essential for mitigating the risk of microplastic contamination in drinking water. The integration of experiments and machine learning offers a promising avenue to elucidate microplastic removal behavior, yet relevant studies are scarce. To address this gap, this study combined experimental and artificial neural network (ANN) modeling to explore the removal behavior and mechanisms of five neglected microplastics in typical coagulation-ultrafiltration processes. Experimental results demonstrated that coagulation achieved an optimal removal rate of 37.0-56.0 % for the five microplastics, and subsequent ultrafiltration almost completely removed all residual microplastics. Five ANN models were constructed and optimized by adjusting activation functions and employing batch normalization, accurately predicting microplastic removal, with high R² values of 0.9972-0.9987. X-ray photoelectron spectroscopy elucidated the involvement of Al
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH