An acoustic squeezer for assessment of multiparameter cell mechanical properties.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Fei Li, Pengqi Li, Yingyin Li, Yifan Liu, Long Meng, Lili Niu, Hao Quan, Hairong Zheng, Wei Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 620.11292 Engineering mechanics and materials

Thông tin xuất bản: Netherlands : Ultrasonics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 695281

Cells' ability to sense and respond to mechanical stimuli is fundamental to various biological processes and serves as a crucial biomarker of their physiological and pathological states. Traditional methods for assessing cell mechanical properties, such as atomic force microscopy and micropipette aspiration, are hindered by complex procedures and the risk of cellular damage due to direct contact. Here we introduce a novel non-contact acoustic squeezer that leverages focused interdigital transducers to induce cell deformation through a robust standing surface acoustic wave (SSAW) field. This approach enables the multiparametric quantification of multiple mechanical properties, including elasticity (Young's modulus, stiffness) and viscosity, without requiring labeling or physical contact, providing a comprehensive understanding of the cell mechanical properties. Our acoustic squeezer is capable of generating a maximum squeezing force of 25.70 pN, inducing a deformability of 1.27 ± 0.017. Combined with thin-shell deformation model, the quantized Young's modulus of normal red blood cells (RBCs) is approximately 919.04 ± 55.64 Pa. Furthermore, our method demonstrates that cells treated with the anti-cancer drug (doxorubicin) exhibited reduced deformability, increased Young's modulus and viscosity. Our acoustic squeezer offers a standardized, non-invasive, and highly sensitive approach for characterizing cell mechanical properties, with significant promise for clinical applications in disease diagnosis and drug development.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH