The increasing importance of hydraulic hubs has grown in parallel with the rapid expansion of the global economy. However, the intensified utilization of hub waters has also elevated the associated risks. In particular, the loss of control of a vessel within these waters can pose significant threats to both infrastructure and the operational stability of hydraulic hubs. Preventing collisions between ships and hydraulic hubs has therefore become a critical issue for safeguarding navigational facilities in such environments. This study develops a probabilistic model to calculate the collision probability of vessels within hydraulic hubs, using the Monte Carlo algorithm and the MMG (Mathematical Modeling Group) method. By simulating the motion trajectories of ships following main engine failure across various operational scenarios, the model incorporates the unique characteristics of hydraulic hubs. A case study of the Poyang Lake Hydraulic Hub is conducted to validate the performance of the proposed algorithm. The results indicate that strategically deploying anti-collision facilities at the mooring piers of the hydraulic hub can significantly reduce the likelihood of ship collisions with navigational infrastructure in the event of main engine failure. These findings provide valuable insights into the optimal design, placement, and integration of anti-collision measures, navigational aids, safety signage, and related facilities within hydraulic hubs. The implementation of these recommendations has the potential to substantially enhance the safety and operational efficiency of ships navigating Hydraulic hub waters.