Complex quantized minimum error entropy with fiducial points: theory and application in model regression.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bingqing Lin, Guobing Qian, Junhui Qian, Zongli Ruan, Shiyuan Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Neural networks : the official journal of the International Neural Network Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 695465

Minimum error entropy with fiducial points (MEEF) has gained significant attention due to its excellent performance in mitigating the adverse effects of non-Gaussian noise in the fields of machine learning and signal processing. However, the original MEEF algorithm suffers from high computational complexity due to the double summation of error samples. The quantized MEEF (QMEEF), proposed by Zheng et al. alleviates this computational burden through strategic quantization techniques, providing a more efficient solution. In this paper, we extend the application of these techniques to the complex domain, introducing complex QMEEF (CQMEEF). We theoretically introduce and prove the fundamental properties and convergence of CQMEEF. Furthermore, we apply this novel method to the training of a range of Linear-in-parameters (LIP) models, demonstrating its broad applicability. Experimental results show that CQMEEF achieves high precision in regression tasks involving various noise-corrupted datasets, exhibiting effectiveness under unfavorable conditions, and surpassing existing methods across critical performance metrics. Consequently, CQMEEF not only offers an efficient computational alternative but also opens up new avenues for dealing with complex data in regression tasks.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH