Enhancing short-term algal bloom forecasting through an anti-mimicking hybrid deep learning method.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jixin Chen, Bangqin Huang, Lizhen Lin, Yichong Wang, Wupeng Xiao, Yaqin Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 336.32 Short-term securities

Thông tin xuất bản: England : Journal of environmental management , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 695470

Accurately predicting algal blooms remains a critical challenge due to their dynamic and non-stationary nature, compounded by high-frequency fluctuations and noise in monitoring data. Additionally, a common issue in time-series forecasting is data replication, where models tend to replicate historical patterns rather than capturing true future variations, leading to inaccurate forecasts during abrupt changes. To address these challenges, we developed a hybrid deep learning model (TAB) that integrates a Temporal Convolutional Network (TCN), an attention mechanism, and Bidirectional Long Short-Term Memory (BiLSTM) network. Furthermore, we employed a novel distortion loss function-DIstortion Loss including shApe and TimE (DILATE)-which incorporates both shape and temporal losses to enhance the model's predictive robustness. Using in situ algal bloom data from Jiangdong Reservoir, Jiulong River, China, the TAB model accurately forecasted hourly chlorophyll-a dynamics for the subsequent 24 h, achieving an R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH