Retrieval-Augmented Generation: Advancing personalized care and research in oncology.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Eyal Klang, Girish N Nadkarni, Shelly Soffer, Mor Zarfati

Ngôn ngữ: eng

Ký hiệu phân loại: 796.96263 Ice and snow sports

Thông tin xuất bản: England : European journal of cancer (Oxford, England : 1990) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 695552

Retrieval-Augmented Generation (RAG) pairs large language models (LLMs) with recent data to produce more accurate, context-aware outputs. By converting text into numeric embeddings, RAG locates and retrieves relevant "chunks" of data, that along with the query, ground the model's responses in current, specific information. This process helps reduce outdated or fabricated answers. In oncology, RAG has shown particular promise. Studies have demonstrated its ability to improve treatment recommendations by integrating genetic profiles, strengthened clinical trial matching through biomarker analysis, and accelerated drug development by clarifying model-driven insights. Despite its advantages, RAG depends on high-quality data. Biased or incomplete sources can lead to inaccurate outcomes. Careful implementation and human oversight are crucial for ensuring the effectiveness and reliability of RAG in oncology.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH