Machine learning-assisted Fourier transform infrared spectroscopy to predict adulteration in coriander powder.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Rishabh Goyal, Sushil Kumar Singh, Poonam Singha

Ngôn ngữ: eng

Ký hiệu phân loại: 362.175 Terminal care

Thông tin xuất bản: England : Food chemistry , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 695623

Coriander is a widely used spice, valued for its flavor, aroma, and nutritional benefits in various cuisines and food products. However, adulteration, such as the addition of sawdust, poses significant risks to food safety and authenticity. This study aims to present a solution for predicting sawdust adulteration in coriander powder by providing a detailed methodology for utilizing machine learning-assisted FTIR spectroscopy. It employs various base models, including linear regression (LR), decision tree (DT), support vector regression (SVR), and artificial neural network, (ANN), for adulteration detection. It was observed that the original dataset and Savitzky-Golay smoothed dataset (dataset generated after preprocessing) yielded superior results by achieving R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH