The extensive use of plastics has brought unparalleled convenience to human social development. However, this has also led to severe environmental and health challenges, with microplastic (MP) pollution emerging as one of the most pressing issues. As ubiquitous environmental pollutants, MPs persist in ecosystems and pose potential risks to both ecological and human health. Studies reveal that MPs impact aquatic, soil, and atmospheric ecosystems by altering their physicochemical properties and causing toxicological harm to resident organisms. Despite these findings, a comprehensive assessment and analysis of MP impacts, especially on atmospheric ecosystems, remains lacking. Similarly, the environmental biotoxicity mechanisms associated with MPs are yet to be systematically described. This review provides an in-depth discussion of the sources and characteristics of MPs, laying the background for elaborating their ecological effects. Current knowledge on MP ecotoxicity in aquatic, soil, and atmospheric ecosystems is then synthesized. Potential molecular mechanisms of biotoxicity are explored. Oxidative stress, inflammatory responses, and metabolic signaling pathway impairment are considered important pathways through which MPs induce toxic injury in environmental animals and have received widespread attention. Additionally, this review emphasizes the challenges faced in studying ecotoxic effects and mechanisms of MPs, such as the lack of reliable detection of environmental MPs and in-depth mining of relevant data, and suggests possible directions for future research. Although progress has been made, significant knowledge gaps remain. Addressing these gaps is critical if effective strategies are to be developed to reduce the environmental and health risks posed by MPs.