Anterior-posterior interactions in the alpha band (8-12 Hz) have been implicated in a variety of functions including perception, attention, and working memory. The underlying neural communication can be flexibly controlled by adjusting phase relations when activities across anterior-posterior regions oscillate at a matched frequency. We thus investigated how alpha oscillation frequencies spontaneously converged along anterior-posterior regions by tracking oscillatory EEG activity while participants rested. As more anterior-posterior regions (scalp sites) frequency-converged, the probability of additional regions joining the frequency convergence increased, and so did oscillatory synchronization at participating regions (measured as oscillatory power), suggesting that anterior-posterior frequency convergences are driven by inter-regional entrainment. Notably, frequency convergences were accompanied by two types of approximately linear phase gradients, one progressively phase-lagged in the anterior direction-the posterior-to-anterior (P-A) gradient-and the other progressively phase-lagged in the posterior direction-the anterior-to-posterior (A-P) gradient. These gradients implied traveling waves propagating in the feedforward and feedback directions, respectively. Interestingly, while in natural viewing frequency convergences were accompanied by both gradient types (occurring at different frequencies) regardless of anterior-posterior routes, when the eyes were closed, the P-A and A-P gradients spatially segregated, channeling feedforward flows of information primarily through the midline and feedback flows primarily through each hemisphere. Future research may investigate how eye closure organizes information flows in this way and how it influences hierarchical information processing. Future research may also investigate the functional roles of frequency-convergence contingent traveling waves in contrast to those generated by other mechanisms.