Liquid lens offers a novel approach to achieving large depth of field, wide viewing angle, high speed, and high-quality imaging in zoom optical systems. However, the aperture and reliability limit the lens's performance in various optical applications. The liquid material is crucial for the reliability of the large-aperture liquid lens. To solve the dielectric failure problem associated with the large aperture, we first reveal the mechanism of dielectric failure based on the transport properties of electrolyte solutions and the impact of electrochemical reaction rates from physical chemistry so as to propose a theoretical method to suppress dielectric failure fundamentally. Based on this theory, we develop a series of non-aqueous organic solutions to suppress high-voltage dielectric failure. Next, we identify the optimal formulation for comprehensive optical performance and fabricate a centimeter-level large-aperture electrowetting liquid lens. This lens features an optical power variation range of -11.98 m