An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Poorya Amini, Alban Bornet, Philipp Khlebnikov, Hossein Rouhizadeh, Douglas Teodoro, Anthony Yazdani, Boya Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 973.928 Administration of George Bush, 1989-1993

Thông tin xuất bản: England : Scientific data , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696097

Adverse drug events (ADEs) are a major safety issue in clinical trials. Thus, predicting ADEs is key to developing safer medications and enhancing patient outcomes. To support this effort, we introduce CT-ADE, a dataset for multilabel ADE prediction in monopharmacy treatments. CT-ADE encompasses 2,497 drugs and 168,984 drug-ADE pairs from clinical trial results, annotated using the MedDRA ontology. Unlike existing resources, CT-ADE integrates treatment and target population data, enabling comparative analyses under varying conditions, such as dosage, administration route, and demographics. In addition, CT-ADE systematically collects all ADEs in the study population, including positive and negative cases. To provide a baseline for ADE prediction performance using the CT-ADE dataset, we conducted analyses using large language models (LLMs). The best LLM achieved an F1-score of 56%, with models incorporating treatment and patient information outperforming by 21%-38% those relying solely on the chemical structure. These findings underscore the importance of contextual information in ADE prediction and establish CT-ADE as a robust resource for safety risk assessment in pharmaceutical research and development.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH