A transformer-based real-time earthquake detection framework in heterogeneous environments.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Irshad Khan, Young-Woo Kwon, Aming Wu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696102

Earthquake detection is the base of seismological research. Recent advancements have highlighted the superior efficacy of deep learning techniques compared to conventional methods. However, deploying these techniques in highly heterogeneous environments poses significant challenges, primarily due to variations in datasets and the diversity of evaluation methods. Notably, existing models often focus on detecting the more pronounced S-waves, neglecting the crucial early detection of P-waves. To address this, our study introduces TFEQ, a transformer-based model designed for real-time earthquake detection within diverse IoT environments. Uniquely, TFEQ concurrently analyzes both P and S waves across different domains. We further substantiate TFEQ's effectiveness and its broad applicability through case studies involving MEMS sensor data collected by the CrowdQuake initiative, demonstrating its reliability and generalization capabilities.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH