A two stage blood cell detection and classification algorithm based on improved YOLOv7 and EfficientNetv2.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: AoRu Ge, ZhiGang Hu, GuangJian Pan, XinZheng Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696179

Current diagnoses of leukemia are typically performed manually by physicians on the basis of blood cell morphology, leading to challenges such as excessive workload, limited efficiency, and subjective outcomes. To solve the above problems, a two-stage detection method was developed for the automatic detection and identification of blood cells. First, for the blood cell detection task, an improved YOLOv7 blood cell detection model was proposed that integrates multihead attention and the SCYLLA-IoU (SIoU) loss function to accurately locate and classify white blood cells (WBCs), red blood cells (RBCs), and platelets in a full-field image of blood cells. For the white blood cell identification task of detecting network positioning, an improved EfficientNetv2 classification model was subsequently developed, which integrates the atrous spatial pyramid pooling (ASPP) module to increase classification accuracy and employs the balanced cross-entropy (BCE) function to address sample number imbalance. The experiments utilized four publicly accessible datasets: BCCD, LDWBC, LISC, and Raabin. The proposed detection model achieved an average accuracy of 94.7% in detecting and identifying blood cells in the BCCD dataset. With an IoU equal to 0.5, the model attained a mean average precision (mAP) of 97.17%. In the white blood cell classification task, an average precision (AP) of 95.12% and an average recall (AR) of 97% were achieved on the LDWBC, LISC, and Raabin datasets. The experimental results demonstrate that the proposed two-stage detection method detects and identifies blood cells accurately, thereby facilitating automatic detection, classification, and quantification of blood cell images, which can aid doctors in preliminary leukemia diagnosis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH