A method for filling traffic data based on feature-based combination prediction model.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jianglin Li, Xueyan Shen, Haicheng Xiao, Xiujian Yang

Ngôn ngữ: eng

Ký hiệu phân loại: 006.337 Programming for knowledge-based systems for specific types of computers, for specific operating systems, for specific user interfaces

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696290

Data imputation is a critical step in data processing, directly influencing the accuracy of subsequent research. However, due to the temporal nature of ride-hailing trajectory data, traditional imputation methods often struggle to adequately consider spatiotemporal characteristics, leading to limitations in both convergence speed and accuracy. To address this issue, this study employs a prediction-based approach to enhance imputation accuracy. Given the limited feature parameters in trajectory data, traditional prediction models often fail to comprehensively capture data characteristics. Therefore, this study proposes a feature generation model based on LightGBM-GRU, combined with a SARIMA-GRU prediction model, to more thoroughly capture and enrich the data characteristics. This approach effectively imputes missing data, thereby laying a solid foundation for subsequent research.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH