Impact of deep learning denoising on kinetic modelling for low-dose dynamic PET: application to single- and dual-tracer imaging protocols.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Margaret E Daube-Witherspoon, Jacob G Dubroff, Joel S Karp, Elizabeth J Li, Florence M Muller, Austin R Pantel, Stefaan Vandenberghe, Christian Vanhove, Corinde E Wiers

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : European journal of nuclear medicine and molecular imaging , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696591

PURPOSE: Long-axial field-of-view PET scanners capture multi-organ tracer distribution with high sensitivity, enabling lower dose dynamic protocols and dual-tracer imaging for comprehensive disease characterization. However, reducing dose may compromise data quality and time-activity curve (TAC) fitting, leading to higher bias in kinetic parameters. Parametric imaging poses further challenges due to noise amplification in voxel-based modelling. We explore the potential of deep learning denoising (DL-DN) to improve quantification for low-dose dynamic PET. METHODS: Using 16 [ RESULTS: DL-DN consistently improved image quality across all dynamic frames, systematically enhancing TAC consistency and reducing tissue-dependent bias and variability in K CONCLUSION: This study demonstrates that applying DL-DN trained on static [
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH