Pesticides, which are widely used in agriculture, have elicited notable environmental concern because they persist and may be toxic. The environmental dynamics of pesticides were reviewed with a focus on their sources, impacts on amphibians, and imminent remediation options. Pesticides are directly applied in ecosystems, run off into water bodies, are deposited in the atmosphere, and often accumulate in the soil and water bodies. Pesticide exposure is particularly problematic for amphibians, which are sensitive indicators of the environment's health and suffer from physiological, behavioral, and developmental disruption that has "pushed them to the brink of extinction." Finally, this review discusses the nanoparticles that can be used to tackle pesticide pollution. However, nanoparticles with large surface areas and reactivity have the potential to degrade or adsorb pesticide residues during sustainable remediation processes. Symbiotic microbes living inside plants, known as endophytic microorganisms, can detoxify pesticides. Reducing pesticide bioavailability improves plant resilience by increasing the number of metabolizing microorganisms. Synergy between nanoparticle technology and endophytic microorganisms can mitigate pesticide contamination. Results show that Interdisciplinary research is necessary to improve the application of these strategies to minimize the ecological risk of pesticides. Eco-friendly remediation techniques that promote sustainable agricultural practices, while protecting amphibian populations and ecosystem health, have advanced our understanding of pesticide dynamics.