Infusing structural assumptions into dimensionality reduction for single-cell RNA sequencing data to identify small gene sets.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Harald Binder, Niklas Brunn, Maren Hackenberg, Tanja Vogel

Ngôn ngữ: eng

Ký hiệu phân loại: 579.256 *Single-stranded, enveloped RNA viruses

Thông tin xuất bản: England : Communications biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696636

Dimensionality reduction greatly facilitates the exploration of cellular heterogeneity in single-cell RNA sequencing data. While most of such approaches are data-driven, it can be useful to incorporate biologically plausible assumptions about the underlying structure or the experimental design. We propose the boosting autoencoder (BAE) approach, which combines the advantages of unsupervised deep learning for dimensionality reduction and boosting for formalizing assumptions. Specifically, our approach selects small sets of genes that explain latent dimensions. As illustrative applications, we explore the diversity of neural cell identities and temporal patterns of embryonic development.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH