Microplastic (MP) pollution is a significant threat to marine environments not only due to its widespread presence but also because of the alarming emergence of ingestion records among benthic organisms. In this study, MP prevalence was assessed in the stomach of the crustaceans Lithodes santolla and Grimothea gregaria and the gastropods Nacella deaurata and N. concinna. Particles were analyzed with Fourier-transform infrared (FTIR) spectroscopy. Overall, the analysis revealed that the particles were mainly microfibers composed of cellulose/rayon (60%), followed by MPs (30%), and undetermined not registered in the library (10%). Higher prevalence was found in marine benthic grazers compared to scavengers, with the latter showing low particle prevalence in their stomach contents. Grazers presented a significantly higher abundance per individual but a lower size of ingested particles compared to scavengers. When grouped by trophic levels, tertiary consumers presented significantly lower abundances per individual but larger sizes of the ingested particles. Pearson's correlations showed no significant associations between particle abundance/size and species body size. The results of this study may suggest that continued MP pollution in marine environments and the associated accidental ingestion by marine organisms will alter the energy flow and organic matter availability in benthic food webs, with species that perform certain functional traits more susceptible to being affected.