An efficient deep learning-based strategy to screen inhibitors for GluN1/GluN3A receptor.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xue-Qin Chen, Zhao-Bing Gao, Wei-Feng Li, Yang-Yang Li, Yu-Guang Mu, Jin-Yuan Sun, Ze-Chen Wang, Hao-Chen Wu, Yue Zeng, Liang-Zhen Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 785.13 *Trios

Thông tin xuất bản: United States : Acta pharmacologica Sinica , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696644

The GluN1/GluN3A receptor, a unique excitatory glycine receptor recently identified in the central nervous system, challenges traditional perspectives of N-methyl-D-aspartate (NMDA) receptor diversity and glycinergic signaling. Its role in emotional regulation positions it as a potential therapeutic target for neuropsychiatric disorders. However, pharmacological research on GluN1/GluN3A receptors remains at an early stage. Traditional high-throughput screening methods for ion channel drug discovery often lack efficiency, particularly when applied to large compound libraries. To address this concern, we designed a deep learning-based strategy that balances efficiency and accuracy for identifying GluN1/GluN3A inhibitors. First, a sequence-based scoring function was developed to rapidly screen a library containing 18 million compounds, reducing the pool to approximately 10
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH