USP10/XAB2/ANXA2 axis promotes DNA damage repair to enhance chemoresistance to oxaliplatin in colorectal cancer.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yue An, Xingwu Liu, Mingjun Sun, Boyang Xu, Guanyu Yan, Shaoming Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 709.012 *To 4000 B.C.

Thông tin xuất bản: England : Journal of experimental & clinical cancer research : CR , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696794

BACKGROUND: Oxaliplatin-based chemotherapy is the first-line treatment for colorectal cancer (CRC). However, oxaliplatin resistance remains a major challenge contributing to treatment failure and poor prognosis. An increased capacity for DNA damage repair is a key mechanism underlying oxaliplatin resistance. Although XPA binding protein 2 (XAB2) is implicated in various DNA damage repair mechanisms, its specific role in mediating oxaliplatin resistance remains unclear. METHODS: XAB2 was identified through analysis of public datasets. Western blot analysis and immunohistochemistry were performed to evaluate XAB2 expression, while survival analysis was performed to assess its clinical significance in CRC. Functional experiments were then conducted to assess the impact of XAB2 on proliferation, DNA damage repair, and oxaliplatin resistance in CRC. RNA sequencing (RNA-seq) and Chromatin immunoprecipitation-sequencing (ChIP-seq) were used to identify XAB2 target genes. Co-immunoprecipitation (Co-IP) and mass spectrometry were used to identify the proteins interacting with XAB2. Dual-luciferase reporter assays, ChIP-qPCR, Co-IP, ubiquitination site mass spectrometry, and ubiquitin assays were used to analyse the interactions and potential mechanisms involving XAB2, Annexin A2 (ANXA2), and ubiquitin-specific protease 10 (USP10). RESULTS: XAB2 was found to be expressed in CRC and was associated with poor prognosis in patients with CRC. XAB2 promoted CRC cell proliferation and enhanced oxaliplatin resistance by promoting DNA damage repair. Mechanistically, CRC cells treated with oxaliplatin exhibited increased USP10 nuclear expression. USP10 bound to XAB2 and deubiquitinated XAB2 K48-linked polyubiquitination at K593, thereby stabilising XAB2 by reducing its degradation via the ubiquitin-proteasome pathway. XAB2 upregulates ANXA2 expression at the transcriptional level by binding to the ANXA2 promoter, thereby promoting DNA damage repair, mitigating oxaliplatin-induced DNA damage, and enhancing oxaliplatin resistance. CONCLUSIONS: In summary, this study demonstrates that the USP10/XAB2/ANXA2 axis promotes proliferation, DNA damage repair, and oxaliplatin resistance in CRC. These findings uncover a novel mechanism of oxaliplatin resistance in CRC and suggest potential therapeutic targets for improving the efficacy of oxaliplatin in CRC treatment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH