LLM-Driven Synthesis Planning for Quantum Dot Materials Development.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jooyeon Ahn, So Eun Choi, MiYoung Jang, Yebin Jung, Ho-Gyeong Kim, Minho Kim, Taekhoon Kim, Young-Seok Kim, Seongeon Park, SangHyun Yoo, SoHee Yoon

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Journal of chemical information and modeling , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 696857

The application of large language models in materials science has opened new avenues for accelerating materials development. Building on this advancement, we propose a novel framework leveraging large language models to optimize experimental procedures for synthesizing quantum dot materials with multiple desired properties. Our framework integrates the synthesis protocol generation model and the property prediction model, both fine-tuned on open-source large language models using parameter-efficient training techniques with in-house synthesis protocol data. Once the synthesis protocol with target properties and a masked reference protocol is generated, it undergoes validation through the property prediction models, followed by assessments of its novelty and human evaluation. Our synthesis experiments demonstrate that among the six synthesis protocols derived from the entire framework, three successfully update the Pareto front, and all six improve at least one property. Through empirical validation, we confirm the effectiveness of our fine-tuned large language model-driven framework for synthesis planning, showcasing strong performance under multitarget optimization.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH