This study investigates the impacts of wildfires on nanoparticle characteristics and exposure disparities in Toronto, integrating data from a large-scale mobile monitoring campaign and fixed-site measurements during the unprecedented 2023 wildfire season. Our results reveal changes in particle characteristics during wildfire days, with particle number concentrations decreasing by 60% and particle diameter increasing by 30% compared to nonwildfire days. Moreover, the median lung deposited surface area (LDSA) levels rose by 31% during wildfire events. We employed gradient boosting models to estimate near-road LDSA levels on both wildfire and nonwildfire days. The LDSA ratio (wildfire/nonwildfire) exceeded 2.0 in certain areas along highways and in downtown Toronto. Furthermore, our findings show that marginalized communities faced greater LDSA increases than less marginalized ones. Under wildfire conditions, the LDSA ratio difference between the most and least marginalized groups was 16% for recent immigrants and visible minorities and 7% for seniors and children, both statistically significant. This study delivers critical insights into the spatiotemporal variations of nanoparticle characteristics during wildfire and nonwildfire periods, demonstrating the substantial health risks posed by increased LDSA levels and the inequitable distribution of these risks among Toronto's diverse population.