Protein sequences primarily determine their stability and functions. Mutations may occur at one, two, or three positions at the same time (low-order variants) or at multiple positions simultaneously (high-order variants), which affect protein functions. So far, low-order variants, such as single variants, double variants, and triple variants, have been well-studied through high-throughput experimental scanning techniques and computational prediction methods. However, research on high-order variants remains limited because of the difficulty of scanning an exponentially large number of potential variant combinations. Nonetheless, studying higher-order variants is crucial for understanding the pathogenesis of complex diseases, advancing protein engineering, and driving precision medicine. In this work, we introduce a novel deep learning model, namely