During the development and progression of lung cancer, cell metabolism function is altered. Thus, cells rely on aerobic glycolysis and abnormal lipid and amino acid metabolism to obtain energy and nutrients for growth, proliferation and drug resistance. Circular RNAs (circRNAs), a class of non-coding RNAs, serve important biological roles in the growth and development of tumors. Functionally, circRNAs act as molecular sponges that absorb microRNAs (miRNAs) and RNA-binding proteins and as protein scaffolds that regulate gene transcription and translation through the maintenance of mRNA stability. In addition, circRNAs are important regulators of tumor metabolism and promote tumor progression through mediating tumor cell proliferation, metastasis and the induction of chemoresistance. Results of previous studies reveal that circRNAs may serve a key role in regulating tumor metabolic processes in lung cancer, through miRNA sponging and alternative mechanisms. Thus, circRNAs demonstrate potential as therapeutic targets for lung cancer. The present study aimed to review the effects of circRNAs on lung cancer cell metabolism and provide novel insights into the clinical treatment of lung cancer. The present review may also provide a novel theoretical basis for the development of lung cancer drug targets.